A multi-block alternating direction method with parallel splitting for decentralized consensus optimization
نویسندگان
چکیده
Decentralized optimization has attracted much research interest for resource-limited networked multi-agent systems in recent years. Decentralized consensus optimization, which is one of the decentralized optimization problems of great practical importance, minimizes an objective function that is the sum of the terms from individual agents over a set of variables on which all the agents should reach a consensus. This problem can be reformulated into an equivalent model with two blocks of variables, which can then be solved by the alternating direction method (ADM) with only communications between neighbor nodes. Motivated by a recently emerged class of so-calledmulti-block ADMs, this article demonstrates that it is more natural to reformulate a decentralized consensus optimization problem to one with multiple blocks of variables and solve it by a multi-block ADM. In particular, we focus on the multi-block ADM with parallel splitting, which has easy decentralized implementation. Convergence rate is analyzed in the setting of average consensus, and the relation between two-block and multi-block ADMs are studied. Numerical experiments demonstrate the effectiveness of the multi-block ADM with parallel splitting in terms of speed and communication cost and show that it has better network scalability. Introduction In recent years, the communication, signal processing, control, and optimization communities have witnessed considerable research efforts on decentralized optimization for networked multi-agent systems [1-3]. A networked multi-agent system, such as a wireless sensor network (WSN) or a networked control system (NCS), is composed of multiple geographically distributed but interconnected agents which have sensing, computation, communication, and actuating abilities. This system generally has limited resources for communication, since battery power is limited and recharging is difficult, while communication between two agents is energy-consuming. Furthermore, the communication link is often vulnerable and bandwidth-limited. In this situation, decentralized optimization emerges as an effective approach to improve network scalability. In decentralized optimization, data and computation are decentralized. Each agent exchanges *Correspondence: [email protected] 1Department of Automation, University of Science and Technology of China, Hefei, Anhui, China Full list of author information is available at the end of the article information with its neighbors and accomplishes an otherwise centralized optimization task. This article focuses on the decentralized consensus optimization problem. We consider a network of L agents which cooperatively optimize a separable objective function [3-8]:
منابع مشابه
Improving an ADMM-like Splitting Method via Positive-Indefinite Proximal Regularization for Three-Block Separable Convex Minimization
Abstract. The augmented Lagrangian method (ALM) is fundamental for solving convex minimization models with linear constraints. When the objective function is separable such that it can be represented as the sum of more than one function without coupled variables, various splitting versions of the ALM have been well studied in the literature such as the alternating direction method of multiplier...
متن کاملModified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers
Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering in which there is no need to be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...
متن کاملImproved proximal ADMM with partially parallel splitting for multi-block separable convex programming∗
For a type of multi-block separable convex programming raised in machine learning and statistical inference, we propose a proximal alternating direction method of multiplier (PADMM) with partially parallel splitting, which has the following nice properties: (1) To alleviate the weight of the proximal terms, the restrictions imposed on the proximal parameters are relaxed substantively; (2) To ma...
متن کاملFast Proximal Linearized Alternating Direction Method of Multiplier with Parallel Splitting
The Augmented Lagragian Method (ALM) and Alternating Direction Method of Multiplier (ADMM) have been powerful optimization methods for general convex programming subject to linear constraint. We consider the convex problem whose objective consists of a smooth part and a nonsmooth but simple part. We propose the Fast Proximal Augmented Lagragian Method (Fast PALM) which achieves the convergence ...
متن کاملParallel Direction Method of Multipliers
We consider the problem of minimizing block-separable convex functions subject to linear constraints. While the Alternating Direction Method of Multipliers (ADMM) for two-block linear constraints has been intensively studied both theoretically and empirically, in spite of some preliminary work, effective generalizations of ADMM to multiple blocks is still unclear. In this paper, we propose a pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Wireless Comm. and Networking
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012